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ABSTRACT: The performance of an artificial neural net-
work (ANN) is affected by the number and types of inputs.
The aim of this article is to study the performance of ANN
algorithms, used for the prediction of cotton yarn strength,
elongation, and evenness, as the input units are subtracted
(skeletonized) and added to the input layer. Nineteen fac-
tors, consisting of fiber properties, processing parameters,
and yarn quality properties, were used as the main source
of inputs. The initial sets of inputs, which were selected on
the basis of their relationship with the output factors, were
13, 13, and 12 for yarn strength, elongation, and evenness,
respectively. The final sets of inputs were 14 factors for the

three yarn quality properties being predicted, and the new
ANN algorithms showed performance improvement of 40,
37, and 47% for strength, elongation, and evenness, respec-
tively, when compared to the algorithms with 19 factors.
Yarn twist, fiber length, and fiber length uniformity were
common among the five most influential factors affecting
yarn strength, elongation, and evenness, accounting for 40,
37, and 37% for the prediction of yarn strength, elongation,
and evenness, respectively. � 2007 Wiley Periodicals, Inc.
J Appl Polym Sci 108: 320–327, 2008
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INTRODUCTION

Yarn occupies an intermediate position in the manu-
facturing of fabric from fibers. The important factors
that affect yarn quality properties include fiber qual-
ity properties, spinning technology, and machine set-
tings.1–5 Consequently, the prediction of yarn quality
properties from fiber quality characteristics and
machine settings has been reported by several
researchers6–10 who used mathematical, statistical,
and artificial neural network (ANN) models. Desai
et al.,11 and Majumdar and Majumdar12 reported
that the use of ANN algorithms for the prediction of
yarn quality properties for ring-spun yarns showed
a higher prediction efficiency than mathematical and
statistical models. The design of an ANN prediction
algorithm involves the selection of several factors,
which include the network architectures, number of
layers in the network, number of neurons in the
layers, and training, learning, and transfer func-
tions.13,14 Other factors such as improving general-

ization (the ability of the ANN to function well
when presented with new data) and data before and
after processing are also involved in the design pro-
cess. In a prediction model, an ANN algorithm tries
to establish the relationship (if any) between the
inputs and the outputs. Therefore, the types of
inputs used will also affect the performance and
design of an ANN algorithm. This article endeavors
to study the performance of ANN algorithms used
for the prediction of yarn strength, elongation, and
evenness properties of cotton ring-spun yarn as the
number of units in the input layer are varied.

FACTORS AFFECTING YARN EVENNESS
AND TENSILE PROPERTIES

A review of the literature covering the prediction of
yarn tensile properties indicated that the factors that
affect the prediction of cotton yarn strength include
fiber properties (fiber length, length uniformity,
strength, elongation, color, micronaire, and trash
particles), yarn properties (count and twist), and
ring-spinning machine settings (spinning draft, trav-
eler mass, and spindle speed).15–19 According to
Ishtiaque et al.16 and Mustafa and Kadoglu,6 the
machine and yarn factors that affect the yarn break-
ing elongation are the spindle speed, traveler mass,
machine draft, yarn count, and twist. With respect to
fiber properties, the most important factors that

Correspondence to: J. I. Mwasiagi (igadwa@yahoo.com).
Contract grant sponsor: China Scholarship Council (Bei-

jing, China).
Contract grant sponsor: University Research Fund of

Moi University (Eldoret, Kenya).

Journal of Applied Polymer Science, Vol. 108, 320–327 (2008)
VVC 2007 Wiley Periodicals, Inc.



affect yarn elongation are the fiber elongation and
fineness. Other important fiber parameters are the
fiber strength, length uniformity, color (reflectance
and yellowness), and short fiber index (SFI).12,19,20

Apart from yarn strength and elongation, yarn even-
ness is another important factor that affects yarn and
fabric quality. Yarn evenness is the measure of the
variation of yarn fineness.21 Yarn evenness is highly
correlated to yarn count and traveler mass.6,17 Other
factors that affect yarn evenness are fiber strength,
reflectance, length, elongation, length uniformity,
yellowness, fineness, trash content, short fiber con-
tent, and draft at the ringframe.

The aforementioned results give the correlation
between yarn quality properties (strength, elonga-
tion, and evenness) and several fiber properties,
machine settings, and yarn quality properties (count
and twist). The introduction of faster cotton fiber
measuring systems such as a high volume instru-
ment (HVI) has brought other cotton properties
[spinning consistence index (SCI), trash area, and
SFI] to the fore. The effects of these new HVI charac-
teristics on yarn quality properties need to be eval-
uated. Because of the aforementioned considerations,
we considered 19 factors—13 HVI characteristics, 4
ringframe machine settings, and 2 yarn properties
(count and twist)—as the main source of inputs for
the prediction of yarn quality properties (Table I).
These factors were further subdivided into two sub-
groups; class A consisted of factors that were
reported to have a strong to medium effect on yarn
quality properties, whereas class B was for those fac-
tors that were reported to have little effect on yarn
quality properties.

ANN DESIGN

The design of an ANN algorithm involves the choice
of many factors, which are governed by the nature
of the task that the ANN is to perform. One of the
commonly used ANN models is the multilayer feed-
forward perceptron (MLP). In its basic form,
MLP14,21–23 consists of a finite number of successive
layers (Fig. 1). Each layer consists of a finite number
of units (often called neurons or perceptrons). The
layers between the input and the output layers are
called the hidden layers.

The MLP network for special use, as is the case in
this article, is usually designed according to the
Cybenko theorem,24 which can be described as fol-
lows: for X being an input in vector space W, that is,
X [ W, and assuming that the real mapping from X
to y can be expressed with the function y ¼ f̂ ðXÞ,
then the mapping worked out by the MLP can be
expressed by the function f(X,n), where n is the pa-
rameter of MLP, which may include the number of
layers, number of neurons in the layers, weights,
biases, and transfer functions. If the MLP contains
only one hidden layer and the transfer functions for
hidden and output layers are sigmoid and linear
functions, respectively, then for f̂ ðXÞ being a single-
valued continuous function and W being finite, the
performance function of the MLP (i.e., the square
error) can be approached with arbitrary precision as
follows:

Z

#

f X;nð Þ� f̂ Xð Þ
h i2

dx< e for any arbitrary e> 0 (1)

For most engineering problems, the condition
under which f̂ ðXÞ is a single-valued continuous
function and W is finite can be fully met. Therefore,
the Cybenko theorem,24 as discussed previously,
was used to design the MLP (Fig. 1) for the predic-
tion of yarn strength, elongation, and evenness. The
parameters of the MLP were as follows:

� Architecture: MLP.
� Number of hidden layers: one.

TABLE I
Classification of Inputs

Strength Elongation Evenness

Length A A A
Uniformity A A A
Strength A A A
Elongation A A A
Reflectance A A A
Yellowness A A A
Micronaire A A A
Trash weight A B A
Trash area B B B
Trash grade B B B
Maturity B B B
SCI B B B
SFI B A A
Yarn count (tex) A A A
Twist A A B
Spindle speed A A B
Draft A A A
Traveler mass A A A
Ring diameter B B B

Figure 1 Architecture of the MLP network.
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� Hidden layer function: sigmoidal.
� Transfer function in the output layer: linear.
� Number of neurons in the hidden layer: opti-

mum number of neurons determined by trial
and error.

The designed MLP was trained with Levenberg–
Marquardt.13,14

INPUT SELECTION METHODS

The problem of input selection in an MLP network
consists of selecting a subset of factors from a larger
set containing the potential factors. Fewer inputs are
an advantage to the performance of the network
because the MLP will be simpler and hence require
less computational resources. Several authors25–28

have reported the use of the determination of the
importance (saliency) of the weights or inputs as a
means of selecting optimum weights or inputs for an
MLP network. This technique, which can be used to
remove less important weights or inputs in the MLP
network, was applied by Jayadeva et al.29 to study
the saliency of units in the input layer [eq. (2)]. This
method has been termed skeletonization:

Si ¼ Ewithout i � Ewith i (2)

where Si is the saliency of unit i, Ewithout i is the
training error of the network without unit i, and
Ewith i is the training error of the network with
unit i.

By expressing the change in the performance error
as a percentage, eq. (2) can be modified as shown in
eq. (3), which can then be used to monitor any
changes caused by the removal of a unit from the
input layer:

DEremove i ¼ ðEwithout i � Ewith iÞ
Ewith i

3100 (3)

where DEremove i is the change of the error in per-
centage when unit i is removed.

This method can be extended to study the effect of
a unit that has been added to the input layer of an
MLP network as follows:

DEadd i ¼ ðEwith i � Ewithout iÞ
Ewithout i

3100 (4)

where DEadd i is the change of the error in percent-
age when unit i is added.

The value of DEremove i will be negative if the per-
formance of the MLP has been negatively affected
by the removal of the unit and positive if the re-
moval of the unit has caused an improvement in the
performance of the algorithm. The former case

implies that the added unit causes deterioration in
the performance of the MLP, so it will be better for
the unit to be excluded from the final list of inputs.
Similarly, when DEremove i is positive, it implies that
the removed unit has caused an improvement in the
performance of the MLP, so it is better to add it to
the final list of inputs. With the same reasoning, if
DEadd i is negative, then the unit should be added to
the final list of inputs, and if DEadd i is positive, then
the unit should be excluded from the final list of
inputs.

EXPERIMENTAL

Materials

Cotton lint and carded ring-spun yarn samples were
collected from textile factories in Kenya. For every
yarn sample collected, a sample of the corresponding
cotton lint mixture used to spin the yarn was also
collected. During the study period, the spinning fac-
tories, which were in operation in Kenya, were
located either in Nairobi and its environs or in
Nakuru. It was necessary to select factories with as
many similarities as possible, in terms of machinery
technology, work culture, quality, and maintenance
policies, to minimize differences that may arise
because of interfactory differences. For a given sam-
ple collected from a selected factory, care was taken
to ensure that all the machinery used was of the
same technology/age to minimize intrasample dif-
ferences. The quality properties of the cotton lint
and yarn samples (Table II) were all tested under
standard laboratory conditions at Donghua Univer-
sity and its affiliated HVI fiber testing institution in
Shanghai, China.

Training of the ANN algorithm

ANN algorithms for predicting yarn strength, elon-
gation, and evenness were designed, and their per-
formance was studied. The architecture of the ANN
was MLP with one hidden layer (Fig. 1). The main
features of the algorithm involved data acquisition,
data before processing, network training, and data
after processing. The acquired data (inputs and

TABLE II
Details of Cotton Lint and Yarn Samples

Cotton lint
Mill
code

Yarn
(Ne)

Number
of cops

Spindle
speed (rpm)

Voi AR B 30 25 11,000
Voi AR B 20 25 10,000
WT AR A 30 25 12,000
Kitui AR A 30 25 12,000
Kitui AR A 24 25 11,000
Kitui AR C 24 25 8,000
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targets) were normalized so that they had zero mean
and unity variance. The data were divided into
training, validation, and test subsets in the ratio of
4 : 1 : 1, respectively, as equally spaced points. Ini-
tially, the MLP networks were trained with select
inputs (designated class A inputs in Table I), and an
optimum MLP was identified. By trial and error, the
optimum number of neurons in the hidden layers of
the prediction algorithms with class A inputs (see
Table I) was fixed at 10. Once an optimum MLP for
the prediction of yarn quality properties (strength,
elongation, and evenness) was identified, the inputs
were subjected to a skeletonization and addition pro-
cess as described in the Input Selection Methods sec-
tion. During skeletonization, the class A inputs were
subtracted one by one, and their effects on the per-
formance of the MLP were evaluated, whereas dur-
ing the addition process, the class B inputs were
added one by one, and their effects on the MLP
were also evaluated. In this way, the effects of all
the inputs on the performance of the MLP networks
were evaluated, and an optimum list of inputs was
selected for the strength, elongation, and evenness
prediction algorithms. Once the final lists of the
inputs were made, skeletonization was used to study
the impact of the input factors on yarn quality prop-
erties.

RESULTS AND DISCUSSION

MLP for yarn strength prediction

The prediction of yarn strength using class A inputs
(Table I) resulted in an MLP network with a mean
squared error (mse) value of 0.004598. The process
of skeletonization and addition of inputs for the pre-
diction of yarn strength yielded a final list of 14
inputs, which are given in Figure 2. Because of the
small change in the number of inputs (from 13 to
14), the number of neurons in the hidden layer for
the optimized MLP was maintained at 10.

With respect to fiber properties, the order of
decreasing importance for the fiber quality character-

istics was as follows: fiber length, length uniformity,
strength, SCI, micronaire, trash weight, SFI, and
elongation. This agrees with the Uster ranking of
fiber properties.30 Among the 19 factors considered,
the five most influential factors were yarn twist, fiber
length, yarn count, length uniformity, and fiber
strength. These five factors accounted for 63.4% of
the yarn strength prediction (Fig. 2).

Yarn twist showed the highest impact on yarn
strength. Ring-spun yarns are twisted to induce lat-
eral forces, which act by means of friction to prevent
fibers from slipping over one another. Higher yarn
twist will lead to higher yarn strength subject to lim-
iting value because of increased interfiber cohesive-
ness. The influence of fiber length on yarn strength
was high (14.1%), very close to the most influential
factor yarn twist, which showed an influence of
14.6%. Higher fiber length increases fiber-to-fiber
overlap distance, which in turn increases interfiber
friction, leading to correspondingly higher yarn
strength. Apart from fiber slip, yarn breakage can
also be caused by fiber breakage. This could account
for the presence of fiber strength among the five
most influential factors affecting yarn strength.
Stronger fibers will produce stronger yarn, and
weaker fibers will produce weaker yarn.

To study the quality of generalization (the ability
to function well when presented with new data) of
the MLP, the errors for the training, test, and valida-
tion data sets were plotted against the network’s
epochs. The results given in Figure 3 are reasonable
because the test and validation errors have similar
characteristics, and it does not appear that any sig-
nificant overfitting has occurred.

The correlation coefficient (R) between the MLP
outputs and targeted values, as shown in Figure 4,
was 0.975 (close to 1), which indicated a good fit.
The final mse value for the optimized MLP for the
prediction of yarn strength was 0.00072. This was farFigure 2 Factors affecting yarn strength.

Figure 3 Performance of strength MLP.
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better than the performance of the MLP with all the
inputs (19), which showed an mse value of 0.001194.

MLP for yarn elongation prediction

With the class A inputs (Table I), the predication of
yarn elongation yielded a performance of 0.0116.
The optimized MLP, which had an mse value of
0.0057, had 14 factors (Fig. 5). Because of the small
change in the number of inputs (from 13 to 14), the
number of neurons in the hidden layer was main-
tained at 10. The performance of the optimized elon-
gation prediction MLP was better than that with 19
inputs, which had an mse value of 0.00908. The five
most influential factors for yarn elongation (Fig. 5)
were yarn twist, fiber elongation, length, length uni-
formity, and yarn count (tex), which accounted for
56%. This agrees with the results of Mustafa and
Kadoglu,6 who reported that fiber elongation, yarn
twist, and count are the most important characteris-
tics affecting yarn elongation. A comparison of
strength and elongation algorithms showed that four

factors (yarn twist, yarn count, fiber length, and
length uniformity) were featured among the five
most influential factors for both algorithms. From
the point of view of fiber characteristics, the impor-
tant characteristics influencing yarn elongation were
elongation, length, length uniformity, SFI, micron-
aire, SCI, trash weight, strength, and maturity.

Yarn breakage occurs when either the fibers slip
over one another or the fibers break. Yarn twist
causes fibers to be deformed (rotated) so that they
make an angle with the yarn axis, and the amount
of twist is a function of this angle. As tensile force is
applied to the yarn, the deformed fibers have to be
straightened. This action increases the length of the
fiber with respect to the yarn axis, which in turn
increases the yarn length and hence gives a higher
yarn elongation. When yarn breaks because of the
breakage of fibers, the increase in fiber length occur-
ring before breakage contributes to the overall
increase in yarn elongation; this explains the high
correlation between yarn elongation and fiber elon-
gation. The trends of the training, testing, and vali-
dation errors for the prediction of yarn elongation
are given in Figure 6. The test and validation graphs
tracked each other carefully, indicating a good level
of generalization.

With the new set of 14 inputs, the optimized MLP
for the prediction of yarn elongation showed an R
value of 0.907 for the regression correlation between
the predicted and targeted values of yarn elongation
(Fig. 7).

MLP for evenness prediction

The initial performance of the evenness MLP using
the class A input data (Table I) showed an mse
value of 0.04744. The optimized MLP had 14 inputs,

Figure 4 Prediction of yarn strength.

Figure 5 Factors affecting yarn elongation. Figure 6 Performance of elongation MLP.
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as shown in Figure 8, with the five most influential
factors being yarn twist, fiber length, length uniform-
ity, micronaire, and maturity, accounting for 53%.
The mse of the optimized evenness prediction MLP
was 0.01196, whereas that of the 19-input MLP was
0.022768. Just as in the case of strength and elonga-
tion algorithms, the number of neurons for the
hidden layer was maintained at 10.

Yarn twist appears to have the highest influence
on yarn evenness. This could be due to the fact that
one of the consequences of yarn evenness is varia-
tion in yarn strength. Because yarn twist, fiber
length, and length uniformity are among the five
most influential factors affecting yarn strength, it is
expected that these factors will also have a great
influence on yarn evenness.

As indicated in Figure 8, the order of decreasing
importance for the influence of fiber quality charac-
teristics on yarn evenness is as follows: fiber length,
length uniformity, micronaire, maturity, SCI, elonga-
tion, strength, and trash grade. Fiber length affects

yarn evenness because fiber length contributes to the
overall cohesiveness of the yarn structure. A longer
fiber will give a more even yarn, whereas a shorter
fiber will produce yarn of inferior evenness. Length
uniformity accounts for the distribution of fiber
length in the yarn structure and will therefore affect
yarn evenness. Higher fiber length uniformity will
produce a more even yarn. Micronaire and maturity
could show such a high influence on yarn evenness
because the finer the fiber is, the greater the number
is of fibers needed for a given yarn cross section.
The increase in the number of fibers leads to an
improvement of the spinning limit, which in turn
leads to better yarn evenness. The graphs of the
training, testing, and validation data sets for the
optimized evenness MLP are shown in Figure 9,
where the validation error traces the testing error
fairly well. This is a sign of good generalization of
the MLP.

Figure 7 Prediction of yarn elongation.

Figure 8 Factors affecting yarn evenness.

Figure 9 Performance of evenness MLP.

Figure 10 Prediction of yarn evenness.
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The optimized MLP for the prediction of yarn
elongation, which had 14 inputs, showed an R value
of 0.915 between the predicted and targeted values
of yarn evenness (Fig. 10).

Comparison of the MLP networks

The performance of the optimum MLP networks
used for the prediction of yarn strength, elongation,
and evenness was compared to the performance of a
similar MLP with 19 units in the input layer. The
percentage change in the performance of the algo-
rithms showed that although the initial set of inputs
(class A inputs) did not improve the performance of
the prediction algorithms, the final set of inputs
showed an improvement of the mse value of 40, 37,
and 47% for the strength, elongation, and evenness
prediction MLPs, respectively (Table III). The new
sets of inputs were fewer (14) compared to the 19
inputs. Although the final list of inputs for the pre-
diction of strength, elongation, and evenness were
different, yarn twist, fiber length, and length uni-
formity were common factors among the five most
influential factors for the three yarn properties and
showed an influence of 40, 37, and 37% for yarn
strength, elongation, and evenness, respectively.
With respect to fiber quality characteristics, the com-
mon factors among the five most influential factors
affecting yarn strength, elongation, and evenness
were fiber length, length uniformity, and micronaire.

CONCLUSIONS

The design of ANN algorithms used to predict the
strength, elongation, and evenness properties of
carded cotton ring-spun yarn was undertaken with
19 inputs: 4 spinning process parameters, 13 HVI
cotton properties, and 2 yarn quality properties
(yarn count and twist). The ANN algorithms were
designed to give single outputs (yarn strength, elon-
gation, or evenness). The architecture and training
algorithms used for the ANN algorithms were MLP
and Levenberg–Marquardt backpropagation algo-
rithms, respectively. The input units were first
selected by the use of the reported relationships

between the 19 inputs and the outputs. The final
groups of inputs were selected by both subtraction
(skeletonization) and addition of inputs to the input
layer of the MLP while the change in the perform-
ance of the initial MLP was monitored. This method
had the advantage of working with a smaller MLP
model in comparison with using the skeletonization
method only, which would have worked with 19
inputs. The initial sets of inputs were 13, 13, and 12
for strength, elongation, and evenness prediction
algorithms, respectively. The optimum algorithms
had different sets of 14 inputs for the prediction of
yarn strength, elongation, and evenness. Compared
to the prediction algorithms using 19 inputs, the op-
timum algorithms showed an improvement of 40,
37, and 47% for the prediction of strength, elonga-
tion, and evenness, respectively. The study of the
influence of the factors on the yarn characteristics
showed that yarn twist, fiber length, and length uni-
formity were the common factors among the five
most influential factors affecting yarn strength, elon-
gation, and evenness, accounting for 40, 37, and 37%
for the prediction of yarn strength, elongation, and
evenness, respectively. With respect to fiber quality
characteristics, the common factors among the five
most influential factors affecting yarn strength, elon-
gation, and evenness were fiber length, length uni-
formity, and micronaire.

The authors thank all the textile firms that provided the
cotton lint and yarn samples.
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